Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride.
نویسندگان
چکیده
It is highly desired to effectively trap photogenerated holes for efficient photoelectrochemical (PEC) water oxidation to evolve O2 on oxide semiconductors. Herein, it is found for the first time mainly based on the time-resolved- and atmosphere-controlled- surface photovoltage responses that the modified chloride would effectively trap photogenerated holes so as to prolong the charge lifetime and hence promote charge separation of single-crystal rutile TiO2 nanorods. Its strong capacity to trap holes, comparable to the widely-used methanol and Co(II) phosphate, is well responsible for the exceptional photoactivities for PEC water oxidation to evolve O2 on rutile nanorods with a proper amount of chloride modified, about 2.5-time high as that on the resulting anatase nanoparticles, even 10-time if the surface area is considered. Moreover, it is suggested that the hole trapping role of chemically-adsorbed chloride is related to its lonely-pair electrons, and to the subsequently-produced intermediate Cl atoms with proper electronegativity for evolving O2. Interestingly, this finding is also applicable to the chloride-modified anatase TiO2. This work will provide a feasible strategy to design high-activity nanostructured semiconductor photoanodes for PEC water oxidation, even for overall water splitting.
منابع مشابه
نانومیلههای نانوبرگدار شده دیاکسید تیتانیم دوفازی بهمنظور استفاده در کاربردهای فتوالکتروشیمیایی
Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...
متن کاملControlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting
In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods ca...
متن کاملEffective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities
Herein, we have fabricated rutile TiO2 nanorod-coupled α-Fe2O3 by a wet-chemical process. It is demonstrated that the visible activities for photoelectrochemical water oxidation and for degrading pollutant of α-Fe2O3 are greatly enhanced after coupling a proper amount of rutile nanorods. The enhanced activity is attributed to the prolonged lifetime and improved separation of photogenerated char...
متن کاملCdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation
In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broaden...
متن کاملFabrication and nanostructural characterization of TiO2 nanorods
TiO2 nanorods are synthesized by a thermal corrosion. In present work, synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases, by using the sol-gel method and alkaline corrosion are reported. The morphologies and crystal structures of TiO2 nanorods are characterized by use of field emission scanning electron microscopy, atomic force microscopy and X-ray diffractometer techniques. The o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016